Pressurized internal lenticular cracks at healed mica interfaces
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The equilibrium states of internal penny cracks at interfaces in thin-sheet bodies are
investigated. Consideration is given to cracks held open by a center-loading force from
an entrapped particle in combination with a uniform pressure from a fixed mass of
entrapped gas. A fracture mechanics analysis indicates that under these conditions the
cracks are stable, but are amenable to growth from an enhancement in net pressure
(increase in internal pressure or decrease in external pressure) or effective particle size.
Essential details of the theory are confirmed by experiments on lenticular cracks at healed
interfaces in muscovite mica. The results are pertinent to flaw responses in brittle ceramic

systems where structural integrity is an issue.

. INTRODUCTION

It has long been recognized that inherent crack-
like flaws from material fabrication processes can have
a profound influence on the performance of structural
ceramics. The most immediate manifestation of such
flaws is a degradation in bulk strength.!? In the special
case of internal cracks parallel and adjacent to a free
surface, the attendant fracture mechanics bear strongly
on such issues as coating/substrate integrity,? subsurface
damage and associated wear in tribological applications,*
and internal flaw growth from particle- (electron or
proton) and photon- (laser) radiation-induced damage.>”’
The study of near-surface internal cracks is, therefore,
of potential interest in the strength characterization of
brittle materials.

In the present paper we study the mechanics and
thermodynamics of internal cracks formed at healed
interfaces in muscovite mica sheets. Results of earlier
observations on this system®® have demonstrated the
advantages of mica as a model material for such a
study. On recontacting thin, freshly cleaved, atomically
smooth mica flakes, axisymmetrical lenticular cracks can
be formed at the adhered interface, even with the mica
sheets in mutual angular misorientation. These cracks
are primarily held open by spurious mica flakes wedged
between the opposing walls. Additionally, air trapped at
the interface during closure can cause an excess pres-
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sure within the crack cavity.” In extreme cases, as
we shall see, such a pressure buildup may constitute
the only opening force keeping the crack open. The
radii of the cracks formed are generally more than an
order of magnitude greater than the thickness of an
individual mica sheet, satisfying a necessary condition
for the application of simple thin-plate elasticity theory
to fracture mechanics problems.!® Moreover, whereas the
mismatch dilation of the healed interface is not sufficient
to allow major constituents of the air within the cavity
to diffuse out over any significant period of time, the
same is not true of the smaller water molecules; by
increasing or decreasing the external humidity, the cracks
expand or contract, typically over a period of several
hours, as water molecules ingress or egress to equilibrate
the internal and external humidity.® This means that,
notwithstanding any differences in internal gas pressure
from crack to crack, the interface energy is spatially
invariant, governed by the ambient humidity.''> Hence
we have a well-defined system, with predetermined
fracture energy, for fracture mechanics analysis.

We begin our study with theoretical derivations of
the crack profiles and energy balance relations for in-
ternally supported penny cracks. Consideration is given
first to cracks with just center-particle support and with
just gas-pressure support. Then the case of combined
support is treated. It is assumed that variations in internal
pressure and volume are constrained by the ideal gas
law. Radial profile measurements on artificially formed
cracks in healed mica sheets, at ambient and reduced
external pressure, are used to illustrate the main theo-
retical predictions. It is shown that internal pressure can
be an important, even dominant, factor in determining
the nature, size, and stability of internal cracks in brittle
materials.
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Il. MECHANICS AND THERMODYNAMICS
OF CENTER-LOADED PRESSURIZED
LENTICULAR CRACK

In this section we develop a fracture mechanics
description for internal lenticular cracks embedded in
a resealed interface. Our approach is to compute the
mechanical energy Uy in the lenticular-crack plates as
the work to displace these walls by a center-particle force
and a uniform internal pressure. To do this we treat the
crack walls as elastic half-plates clamped into an infinite
rigid plate at their circumference. Our analysis embodies
the following assumptions: (i) the crack radius is large
compared to the sheet thickness, so that the thin-plate
theory is valid; (ii) the two opposing crack walls are of
equal thickness, and are of the same material, so that
mode II components are absent; (iii) the normal crack-
wall displacements are small compared to the sheet half-
thicknesses so that membrane stresses!® may be ignored.
Then we compute the Griffith—Irwin mechanical-release-
rate G = —dUy/dC with respect to crack area C =
arc?, with ¢ the crack radius. The condition G = W
for crack equilibrium is governed by the Dupré work of
adhesion, W = 2+ypg, with 27y the interface energy for
the body B in the presence of the environment E.>!13
Again, for our specific system of rehealed/misoriented
mica in controlled ambient (Sec. III), the interface en-
ergy is to be regarded as a predeterminable, invariant
quantity.

A. Crack with center-point fixed-displacement
loading

Consider the case where a lenticular crack of
radius ¢ is supported only by a rigid particle of
dimension 2h (Fig. 1) trapped in the interface without
any excess internal pressure. Each crack wall is subject
to fixed central-opening displacements 4, corresponding
to central forces P [Fig. 1(a)]. From thin-plate elasticity,
the wall displacement at a radial distance r is given by!°

up(r) = ud[1 — (r/c)* = 2(r/c)* In(c/r)],

O0sr=c )

The central displacement, up(0) = up = h = constant,
is given by!?

uS = h = 2Pc*/AmE'd, )

where d is the wall thickness, and E' = E/(1 — v?)
with E Young’s modulus and » Poisson’s ratio. The
volume of the crack can be immediately calculated by
integrating up(r) over the crack plane:

1
Vp = > mhe?. (3)

-

FIG. 1. Lenticular crack of radius ¢ in a thin beam specimen of
half-thickness d, supported by combined central point force P from
a particle of radius & and uniform pressure p from internally
trapped gas.

The mechanical energy Uy, and thence G, can be
computed by integrating the force P at r = 0 through
the displacement A for the two plates:

Gplc,P) = 3P*/Am*E'd°. )

Note that since P varies inversely with ¢ at constant h
in Eq. (2), G also varies inversely with ¢, so the crack
is inherently stable in this loading. Combining Egs. (2)
and (4), we obtain the equilibrium crack size at G = W
in terms of A,

1/4

c = (4E'd*hn?*/3W)". )
B. Crack with internal uniform pressure loading

In this subsection, we consider fully pressurized
internal lenticular cracks held open only by a uniform
excess internal pressure,

P = DPi ~ Pe (6)

with p; and p, the internal and external pressures. From
thin-plate elasticity theory,'”

up(r) = up[l — (r/c)z]z, o<r<ec, (1

with central displacements up(0) = ug related to P
by10

u) = 3pc*/16E'd. (8)
The crack volume is again obtained by integration over
the crack plane:

V, = wpc®/8E'd’. ©)

The system mechanical energy is determined by
integrating the uniform internal stresses through the
outward displacements over the entire crack surfaces,
from which we obtain

G,(c,p) = 3p*c*/16E'd’. (10)

J. Mater. Res., Vol. 8, No. 5, May 1993 1129



K-T. Wan et al.. Pressurized internal lenticular cracks at healed mica interfaces

Note that G increases with p, so the crack would
be unstable if p were to remain constant. However,
as we shall see later, p itself tends to diminish with
increasing ¢, such that the crack actually becomes stable.
At equilibrium, G = W, we have

c = (16E'd*w/3p»)"". (11)

C. Combined center-point and uniform pressure
loading

Now let us consider the cooperative effect of a
central point force P and an excess uniform internal pres-
sure p. The crack profile is given by the superposition
of Egs. (1) and (2) with Egs. (7) and (8), up+,(r) =
up(r) + u,(r), subject to the constraint up.,(0) =
up =h = constant, i.e.,

up = (3c*/AE'd®)(P/m + pc?/4) = h, (12)
yielding

ups+p(r) = h1 — (r/c)* — 2(r/c)* In(c/r)]
—Bpc*/16E'dP)(r/c)*[1 = (r/c)* — 2 In(c/r)],
O0=sr=c. (13)

The crack volume is once more determined by integra-
tion over the crack plane:

= %ﬂcZ(h + pc*/16E'd%). (14)

To find the equilibrium configuration for the crack
with superposed loadings, we note that it is the stress-
intensity factor K = (GE')"? and not the energy-release
rate G itself that is additive for a given fracture
mode,? i.c.,

VP+p

Kpip = Kp + K, (15)

with Kp determined from Eq. (4) and K, from Eq. (10).
The net mechanical-energy-release rate is then given by
Gpsp = (Kp + K,)'/E, ic.,

Gpsple, p, P) = BJ4E'd)P/m + pc?/2]
4
= gE’d3[h/c2 + 3pc/16E'd°T.
(16)

The first term in the square bracket is due to the central
point force and the second to the excess internal pressure.
Note that Eq. (16) reduces to Eq. (4) for p = 0 and
Eq. (10) for P = 0. At G = W, Eq. (16) may be solved
in combination with Eq. (12) for the stable equilibrium
crack size:
c = (1I6E'@®W/3p)"[1 — (1 — hp/W)"*]"*. (17)
We need to identify an important restriction on
Egs. (12)—(17) developed above. It is implicit in the

statement of these relations that the central particle
remains in contact with the crack walls, i.e., ug = h. If
the internal pressure p is increased to some critical level,
the crack-wall center displacement may indeed exceed
this condition, i.e., ug > A, corresponding to “lift-off”.
At lift-off, the lenticular crack is supported only by the
pressure p, and the center force diminishes to P = 0.
The formulation then reverts to that of Egs. (6)—(11).
The lift-off pressure may be determined by the require-
ment that ¢ in Eq. (17) remains real, ie., p* = W/h.
[Strictly, a negative P is physically allowable. That
would correspond to total adherence between particle
and crack walls (“sticky particle”) at high internal gas
pressures. In keeping with experimental observations
(Sec. III. A) that the crack walls are readily separated
on reopening the interface, we exclude this possibility
in the present study.]

D. Ideal gas law relations

In our experimental configuration (Sec. III), the pres-
surized cracks are subject to a constraint; the number
of gas molecules N trapped in the crack cavity remains
constant after the formation of the interface. We suppose
the internal atmosphere satisfies the ideal gas law so
that, at a given absolute temperature 7', the internal gas
pressure p; varies inversely with the crack volume V.
Then Eq. (6) becomes

p = NkT/V — p., (18)

with k Boltzmann’s constant.

The volume relation Eq. (9) or (14) may be
combined with Eq. (18) to determine the functional
dependence p(c,N,p,) for partially and fully gas-
pressurized cracks, and thence substituted into the
appropriate fracture mechanics relation Eq. (10) or (16)
to determine G(c, N, p.). For conditions in which N and
p. are held constant during crack extension, it is then
tedious but straightforward to show that dG/dc < 0 in
both the partially and fully pressurized configurations.
The pressure difference p across the crack walls can also
be manipulated by varying the external gas pressure p,.

lll. MEASUREMENT OF LENTICULAR-CRACK
PROFILES IN MICA

A. Preparation of lenticular cracks in mica

Preparation of the specimens follows prescriptions
outlined in previous papers.®%!* A thin sheet of surface
dimensions 50 X 50 mm and thickness =50 um was
cleaved from bulk muscovite mica. Such sheets were
then cut into two halves perpendicular to their cleavage
plane. Each pair of halves, after mutual rotation of
~45° about a common surface normal, was allowed to
come into adhesive contact so as to form a “healed-
misoriented” interface. Several lenticular cracks were
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FIG. 2. Micrograph of a portion of a healed adhesion interface in
mica after cleavage and mutual rotation of the two specimen halves.
Specimen shows several lenticular cracks. Fizeau fringes indicate
crack-opening contours. (Line joining cracks at left and right is
spurious cleavage step.) Marker indicates 1 mm.

observed at the resealed interfaces of these specimens.
Figure 2 is an example. Most of the cracks were found
to contain a central particle, most often a microscopic
edge flake produced by the specimen preparation. Occa-
sional cracks were found with no such noticeable central
particle at all.

After formation, the healed interfaces were allowed
to sit for several days, to allow the system to equilibrate.
It has been shown’ that such cracks will expand or
contract in delayed response to any substantive increase
or decrease in external humidity. Our observations were
accordingly made in an ambient laboratory atmosphere
of relative humidity =40-60%. Previous comparative
experiments on open (double-cantilever beam) crack
configurations in mica'>!* indicate an interface energy
W = 150 = 40 mJ - m~? at relative humidity 50% for
equilibrium cracks formed under such conditions. We
take 150 mJ - m~2 as a constant reference value for our
later analyses.

Cracks such as those in Fig. 2 could be opened
up and re-formed repeatedly by slowly inserting and
withdrawing a sharp blade along the healed interface.'?

B. Crack profile observations

Crack profiles were observed using an inverted
microscope with a monochromatic light source.® Interfer-
ence of the light reflected from the opposite crack walls
produces a set of concentric two-beam Fizeau fringes.
The crack-wall separation at the center of a dark fringe
is given by

2u(r) = mA/2, (19)

where m is the fringe order for constructive interference,
and A is the wavelength (A = 0.55 um, green light).

Hence the profile can be constructed by measuring the
positions of the interference fringes. We estimate the
uncertainty of locating the center of each fringe as =0.1
fringe spacing, but omit error bars from our plots below
(Sec. IV.B) to avoid data overlap.

Typical internal lenticular cracks are shown in
Figs. 3(a) and 4(a). Note that the innermost and
outermost fringes are comparatively wider than the
intermediate rings, reflecting the boundary condition
du/dr = 0 at r = 0 and r = ¢. The dimensions ¢ and
uo for each crack can be found by extrapolation of the
appropriate displacement relation u(r) in Sec. II to these
zero-slope limits.

C. External pressure variations

An experiment was run on the cracks in Figs. 3(a)
and 4(a) (p, = | atm = 0.10 MPa) to investigate the

(b)

FIG. 3. Test crack 1 at healed-misoriented mica interface; external
pressure (a) p, = 0.10 MPa and (b) p, = 0. The crack radius in-
creases as p, diminishes, but the number of fringes remains the same.
Marker indicates 250 pm.
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(b)

FIG. 4. Test crack 2 at healed-misoriented mica interface; external
pressure (a) p, = 0.10 MPa and (b) p, = 0. Again, the crack radius
increases as p, diminishes, but the number of fringes now also
increases by one. Marker indicates 250 wm.

effect of external pressure p, on the crack profile. The
mica specimen was placed inside a sealed chamber
with a lead-through to a mechanical vacuum pump.
Figures 3(b) and 4(b) show the resultant fringe patterns
immediately after evacuation of the chamber. The ef-
fect is reversible; i.e., the patterns restore to those in
Figs. 3(a) and 4(a) after release of the vacuum.

IV. ANALYSIS OF CRACK PROFILE DATA
A. Qualitative observations of pressurized cracks

In this subsection we describe some qualitative
experiments to demonstrate the competitive influence of
center-particle support and excess internal gas pressure
on the lenticular crack profiles.

First, we draw some immediate conclusions by not-
ing that the number of fringes in cracks of very nearly

equal size is not always the same, even in cases where the
cracks appear at first sight to be particle supported. Given
that the fracture energy W is invariant, we see from
Eq. (5) that cracks at constant ¢ in the same specimen
imply a constant value of center-point displacement h.
Yet the crack in Fig. 3(a) contains two more fringes
than that in Fig. 4(a), even though ¢ for the latter crack
is slightly larger. The implication is that even if both
cracks are indeed particle-supported, an additional net
crack-opening force from the internal gas must exist
in the larger one. This in turn points to a buildup of
internal pressure during the initial recontact adhesion as
the mica sheets collapse onto occluded pockets of atmo-
spheric gases.

Consider now the responses of the same cracks at
reduced external pressure p, in Figs. 3(b) and 4(b). In
cach case the crack size is expanded by the pressure
reduction. Notwithstanding such expansion, the crack in
Fig. 3(b) shows no measurable change in the number of
fringes relative to Fig. 3(a). We may tentatively conclude
that this crack remains essentially particle-supported. On
the other hand, the crack in Fig. 4(b) shows an extra
fringe relative to Fig. 4(a). In this case the subsequent
drop in p,. is apparently sufficient to augment any pre-
existing internal pressure, effecting “lift-off”.

Another experiment provides further support of a
residual pressure difference at the lenticular cracks.
Figure 5 shows the interaction of one such lenticular
crack, in a different specimen, with a second, straight-
fronted, blade-driven crack.® The sequence in Fig. 5
shows (a) slight mutual repulsion on first approach (ini-
tial blade insertion), (b) strong repulsion just before
coalescence (further blade insertion), and (c) after co-
alescence (not shown), re-formation of the lenticular
crack after withdrawal (blade retraction). The crack
retraction in (c) attests to the well-documented atomic
smoothness of the cleavage process in mica.®!! In many
instances in our experiment the crack recovered its
initial configuration.® However, the crack radius in Fig. 5
is clearly less after the coalescence; the number of
interference fringes is reduced from six to five. Note
also in Fig. 5(b) that the initial axisymmetry of the
crack is severely distorted, and that the trapped particle
is now located at the fifth fringe on the near side
rather than at the sixth central fringe. This implies
that the particle was never in contact with the crack
walls in the immediate postformation state; i.e., the
cavity was fully gas-pressurized. Presumably the par-
ticle is immobile, for otherwise the repulsed lenticular
crack would simply have translated with the advanc-
ing straight crack. Coalescence appears to have re-
leased the internal gas pressure, effectively allowing the
internal and external pressures to equilibrate and the
crack to re-form with a central-opening displacement
equal to the particle diameter. Further passes of the
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()

FIG. 5. Lenticular crack and wedge-driven straight-fronted crack
along healed mica interface: (a) wedge stationary, cracks noninter-
active; (b) wedge advance, cracks in mutual repulsion immediately
before coalescence; (c) wedge withdrawal, cracks after coalescence
(not shown) and re-formation. Marker indicates 100 wm.

straight crack in Fig. 5 had no further effect on the
configuration.

Occasional small cracks were observed to trans-
late with the advancing wedge. Such cracks invariably
appeared to be free of internal particles, and could
be eliminated by advancing the wedge until the crack
perimeters intersected a specimen edge.

Crack-Opening Displacement, u (im)

l L
0 200 400 600
Radial Distance, r (iLm)

FIG. 6. Profiles of lenticular crack in Fig. 3. Points are measured
data, curves are theoretical fits. Crack is particle-supported at both
pe = 0.10 MPa (lower curve) and p, = O (upper curve).

B. Quantitative measurements of crack profiles

Crack-opening  displacements  evaluated from
Figs. 3—-5 using Eq. (19) are plotted as the data points
in Figs. 6—8. Curve fitting to these data is done by
adjusting parameters in the appropriate u(r) profile
equations in Sec. II, consistent with an invariant W =
150 J-m~% at T = 300 K.

o
o)

<
~

o
o

Crack-Opening Displacement, u (1im)

0 200 400 600
Radial Distance, r (Lm)

FIG. 7. Profiles of lenticular crack in Fig. 4. Points are measured data,
solid curves are theoretical fits. (Dashed curve is projected fit to lower
data set assuming crack always remains in “lift-off” condition. See
text.) Crack is particle-supported at p, = 0.10 MPa (lower curve),
but is in lift-off configuration at p, = O (upper curve).
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0.5 | | T

Crack-Opening Displacement, u (im)
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FIG. 8. Profiles of lenticular crack in Fig. 5. Points are measured
data, curves are theoretical fits. Upper set corresponds to crack
before coalescence with wedge-driven straight crack, lower set after
coalescence. Coalescence event releases excess internal gas pressure.

Consider the crack in Fig. 3. Since the number of
fringes remains the same in Figs. 3(a) and 3(b), we
presume the crack remains particle-supported before and
after the reduction in external pressure p,. To allow
for the possibility of a pre-existing pressure difference
p in Fig. 3(a), we use u(r) in Eq. (13) as a general
profile relation. Examine first the simpler case of zero
external pressure in Fig. 3(b). Combining Eq. (18) at
p. = 0 with Eq. (14) enables us to eliminate p from
Eq. (13), so that u(r) is uniquely determined by just
three parameters, h, ¢, and N. Best fitting the data
set for p, = 0 in Fig. 6 yields &2 = 0.639 um, ¢ =
559 um, and N = 16.6 X 10'2 molecules. The profile
corresponding to this parameter fit is shown as the
upper solid curve in Fig. 6. Now we may predict the
profile for p, = 0.10 MPa (1 atm) in Fig. 3(a), keeping
h and N unchanged and simply determining a new
best-fit value for the crack size, ¢ = 519 um. This
prediction is shown as the lower solid curve in Fig. 6.
This lower curve is consistent with the data set at normal
atmospheric external pressure, to within an uncertainty of
*0.1 fringe spacing (Sec. III. B). With this calibration,
we may revert to Egs. (14) and (18) to estimate a pre-
existing excess pressure p = 0.14 MPa for the crack
in Fig. 3(a).

Now consider Fig. 4. Clearly, the lift-off condi-
tion has been exceeded in Fig. 4(b), so u(r) is given
by Eq. (7) for fully gas-pressurized cracks. Combining
Eq. (18) at p, = 0 with Eq. (9) to solve for p and
inserting back into Eq. (7), we find this time that u(r)
is uniquely determined by just two parameters, ¢ and

N. Best fitting the data set for p, = 0 yields ¢ =
639 um and N = 30.9 X 10?2 molecules. The corre-
sponding profile is shown as the upper solid curve in
Fig. 7. Now if we use these best-fit values to predict
the profile for the crack in Fig. 4(a) using Eq. (7) at
p. = 0.10 MPa, we obtain the dashed curve in Fig. 7.
This predicted curve falls well below the lower data
set, so we conclude that the crack-opening displacement
must be constrained by the internal particle. Accordingly,
we recompute the displacement profile by once more
invoking Eq. (13), at the same N but with adjustments
h = 0.530 um and ¢ = 569 um. The resulting lower
solid curve in Fig. 7 provides a more satisfactory fit
to the data. Again, we may evaluate a pre-existing ex-
cess pressure, p = 0.28 MPa, for the crack in Fig. 4(a)
(p. = 0.10 MPa), i.e., significantly higher than for the
crack in Fig. 3(a).

Finally, we plot the profiles for the crack in Figs. 5(a)
and 5(c). Again, it is clear that the crack is in full gas-
pressure support in Fig. 5(a), and full particle support at
p = 0 in Fig. 5(c). Our fitting procedure is the same as
in the preceding paragraph, except that we now no longer
constrain N to have the same value before and after
coalescence. The fits shown in Fig. 8 correspond to the
following adjustments: ¢ = 336 um and N = 10.9 X
10'? molecules in (a); A = 0.357 um, ¢ = 220 um, and
N = 0.66 X 10'2 molecules in (c). The number of gas
molecules within the crack cavity is reduced by over an
order of magnitude by the coalescence event.

V. DISCUSSION

We have considered the equilibrium states of lentic-
ular cracks in the thin interlayer geometry of Fig. 1
under the constraints of fixed particle size # and number
of molecules N. It is readily shown that under these
constraints the equilibria are inherently stable, even
when the cracks are fully gas-pressurized. Recall that the
condition for a crack to be stable is that dG/dc < 0;
and conversely, to be unstable, dG/dc > 0.} For our
cracks at fixed A and N, G is always a diminishing
function of crack size c¢. The purely particle-supported
crack (p = 0) is especially stable. From Egs. (2) and
(4), we have G(c) = 4E'd*h?/3c*, i.e., inverse fourth
power dependence on ¢ at h constant. Not so strongly
dependent on ¢, but stable nonetheless, is the fully
gas-pressurized crack (4o > h), as we may illustrate
by considering the simplest external pressure condition,
pe = 0. From Egs. (9), (10), and (18) we obtain G(c) =
3NKkT/2mc?, i.e., inverse square dependence on ¢ at N
constant. It is straightforward (if tedious) to demonstrate
that cracks in combined particle and pressure support lie
intermediate between these two stability extremes.

Note that by invoking the equilibrium condition,
G = W, we can express the crack-opening displace-
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ment and crack radius in terms of W. For the fully
particle-supported crack, we have uy = h [Eq. (2)] and
c = (4E'd*h?/3W)"* (previous paragraph). Then uqg
is independent of E’ and d, but ¢ is not. For the
fully gas-pressurized crack at p, = 0, the corresponding
relations are uy = 27p(NkT)*/16E'd*W [Egs. (8), (9),
and (18)] and ¢ = (3NkT/27W)" [Egs. (9)—(11) and
(18)]. Now it is ug that is dependent on E’ and d, and
c that is not. Accordingly, if one were able to reduce
the material modulus or specimen thickness, the crack
in particle support (49 = h = constant) would contract
in radius but remain fixed in center opening, whereas
a crack in internal gas support (N, T constant) would
remain fixed in radius but bulge outward at its center.

We have specifically considered the double-layer
thin-plate system in Fig. 1. However, our analysis may
be logically extended to the analogous single-layer sys-
tem of a thin coating on a thick (semi-infinite) substrate.
Then for simple mode I loading, the mechanical energy
of an interfacial crack derives from the deflection of
one elastic plate instead of two, corresponding to a
reduction of two in the crack-driving force; i.e., G(c) =
3NkT/4mc? for a fully gas-pressurized crack. Strictly,
conversion to the single-layer geometry destroys the
specimen symmetry about the crack plane, leading to the
superposition of a mode II component in the loading,'®
with consequent augmentation of the net G. However,
this will not alter the fundamental crack-size dependence
of G, so the crack remains stable.

Another crack geometry of common interest is the
case of a fully embedded crack in an infinite medium.
The basic fracture mechanics for a gas-pressurized penny
crack in a bulk solid are included in the Appendix.
Although the thin-plate theory is no longer valid, G(c) =
3NkT/4mc?, ie., the same (mode I) result as above for
a thin coating on a semi-infinite substrate. Therefore, at
constant N, the system is yet again stable.

An interesting variant of the coating/substrate con-
figuration in relation to crack stability is the use of
the so-called “blister test” for determining interface
properties.”” Gas is pumped into the interface under
pressure control. Under these special conditions we
have G(c) « p%c* from Eq. (10), and the equilibrium
at constant p is consequently unstable. On perturbing
the equilibrium, the coating fails catastrophically, so
the critical pressure provides a measure of the inter-
face strength.

Instances also exist where N may be increased
within the crack cavity without compromising the sta-
bility. We cite two cases here:

(i) Sheets of virgin (phlogopite) mica with lenticular
flaws similar to those observed in the present study, but
on a smaller scale, are beam heated in a transmission
electron microscope.’ The flaws contain liquid water,
which is unable to diffuse out along the interface to the

external atmosphere’; the virgin interface at the crack
plane, in contrast to the healed-misoriented interface in
our mica specimens, is not in a state of lattice-plane
dilation. On heating above the boiling point, the occluded
water evaporates, dramatically increasing the number
of molecules N in the gaseous state. The result is a
rapid expansion of the crack radius. This expansion is
nevertheless stable and is usually reversible on reducing
the beam intensity. In extreme cases, those where the
quantity of internally trapped water is unusually large,
the expansion extends to the edge of the specimen,
thereby rupturing the sheet irreversibly.’

(ii) Crystals of lithium fluoride containing sub-
microscopic inclusion-type defects are irradiated with
a high-power laser pulse.” The inclusions preferentially
absorb the laser radiation, and evaporate virtually
instantaneously, filling the cavity with an expanding gas.
This causes sudden penny-crack growth along favored
{001} cleavage planes. In lithium fluoride the cleavage
is far removed from the atomic smoothness of mica, and
copious wedging fracture debris remain to restrain the
cracks from closing up and healing.’

The crack evolution in these two examples may
be depicted graphically as transitions between stable
branches on a G(c) diagram, as in Fig. 9. A, B, and C
are Griffith—Irwin equilibrium states, G = W. Suppose
the crack is initially in particle support (G « h?/c*),
state A. On heating or irradiating the cavity, the gases
expand, lifting the walls off the particle (G = N/c?)
and enlarging the crack radius, state B. If the crack is
reversible [as in example (i) above], it reverts to state A.
If debris become wedged between the newly expanded

Mechanical-Energy-Release Rate, G

Crack Radius, ¢

FIG. 9. Plot of G(c) for lenticular flaw, showing equilibrium
configurations A, B, and C at G = W. State A corresponds to the
initial particle-supported crack; state B is lifted-off crack after an
abrupt expansion of internal gas; state C is relaxed particle-supported
crack after recondensation of released gas. Note all states are sta-
ble (dG/dc < 0).
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walls [as in example (ii) above], the crack is held open in
enhanced particle support (G < h2/c*, h' > h), state C.

Internally pressurized cracks simulate the conditions
that exist in many real flaws in brittle solids, including
those formed in ceramics as a result of the processing
chemistry and those formed by subsequent mechanical,
thermal, or radiation treatments. Such pressure provides
an extra, residual crack-driving force, which can aug-
ment any applied loading and lead to premature failure.
Such concerns are particularly relevant to the fracture of
coatings on substrates, to subsurface regions in contact
(especially sliding) loads, and to materials in severe
radiation (e.g., reactor) environments.
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APPENDIX: GAS-PRESSURIZED INTERNAL
LENTICULAR CRACKS IN AN INFINITE ELASTIC
MEDIUM

Consider a penny-like crack of radius ¢ embedded
in an infinite elastic medium of modulus E’ with in-
ternal gas pressure p. The crack profile is the classical
ellipsoid!®

u(r) = @4p/mwE)(c? — r)". (A1)
The volume of the crack void is
V = 16pc’/3E’. (A2)

Combining the Griffith—Irwin mechanical-energy-release
rate with Eq. (18) at p, = 0 yields?

G = 4p*c/mE' = 3NKT/4mc. (A3)
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